
©Copyright 2009 BMC Software, Inc.

1

BMC Software Inc.

Technical Disclosure Publication Document

Application Integration Manager (AIM)

Author

Vincent J. Kowalski

Posted: June 2009

Overview

This document describes an invention, the Application Integration Manager (AIM), which applies
Service Oriented Architecture (SOA) to the problem of managing the interactions between
applications that comprise integrated solutions.

Background

In this section we describe what is meant by Service Oriented Architecture (SOA) and the
problems we are trying to solve by applying it. In the next section, the Application Integration
Manager (AIM) invention that implements and elaborates this SOA vision is described.

Service Oriented Architecture (SOA) is best described by Figure 1 below. Formal
computing standards that correspond to the components in the diagram are Universal Description
Discovery and Integration (UDDI) for the web services registry and Web Services Description
Language (WSDL) and SOAP (originally, Simple Object Activation Protocol) for the interactions
between service client and service provider. Numerous technology vendors as well as Open
Source organizations provide implementations of these standards. This invention does not re-
invent SOA or its supporting standards and their implementations. Instead, it creates added value
that is above and beyond what is defined and provided for by such base technology.

©Copyright 2009 BMC Software, Inc.

2

 Figure 1. Service Oriented Architecture (SOA)

In this architecture, service providers are able to publish their interfaces in a web services
registry. Potential service requestors or clients of those services can discover these service
interfaces and their corresponding endpoints or implementations in the registry. Such clients can
then invoke the services of the providers dynamically. This interaction model is the essence of
loose coupling and has a number of significant advantages over more traditional application
integrations. These advantages include:

• Location independence (clients don’t need to know the endpoint they will talk to until
run-time)

• Version independence (implementations can be versioned without the integrations
breaking)

• Implementation independence (different endpoints that have different technology can
implement the same interface)

In particular, SOA will address the following problems that consistently arise with more
traditional integration technology:

• Brittleness
• High cost of development and maintenance
• Difficulty of Installation (impacting customers’ time-to-value)
• Lack of agility (causing customer to be averse to upgrades)

©Copyright 2009 BMC Software, Inc.

3

Solution

The Application Integration Manager (AIM)
The Application Integration Manager (AIM) uses the basic concepts of SOA and elaborates key
aspects of it to create a complete solution that allows the integration of various applications and
application components. Without these additional features, SOA is a conceptual, enabling
framework and not much more. AIM, described below, is the realization of the SOA conceptual
framework that provides the tools and services to achieve the kinds of loosely-coupled, dynamic
software integrations that are the intent of SOA.

Use Case

 Figure 2. BPM – SIM Integration

Figure 2 above depicts the kind of integrations that are enabled with AIM. In this use case, the
customer would like to have near real-time events fed into the Service Impact Manager (SIM)
application. This is done so that service models stored in SIM accurately reflect the actual
operational nature of the enterprise. Furthermore, let’s assume that SIM and BMC Performance
Manager (BPM) applications are purchased and/or installed by the customer at greatly different
times (for example, SIM is installed one year after the installation of BPM). When SIM comes
on-stream it registers its services in the Web Services (WS) Registry. At that point BPM can
either find out (by query) or be notified that SIM services are available. Without any additional
administrative or configuration efforts by the customer, BPM can now communicate events of
significance (e.g., server 2 going off-line) to SIM using the SIM Send Event Service. SIM can
use such event information to update its service models accordingly.

©Copyright 2009 BMC Software, Inc.

4

Features
To enable integrations such as the one described above, it is necessary to introduce some
additional features to the basic SOA framework. These additional features are the essence of this
invention. These features are:

• Registry-based Dynamic Integration and Configuration of Applications
• Registry-based Versioning of Service Interfaces and Implementations
• Registry-based Disambiguation of Service Implementations
• Registry-based Resource Management
• Web services-based Inter-Component Communication

Each of the above features will be described below in its own subsection.

Registry-based Dynamic Integration and Configuration of Applications

APIs require client applications to bind to pieces of code that are dependent on implementation
details such as the programming language, runtime libraries and so on. In the loosely coupled
integration scenario enabled by AIM all these details are hidden from the client. In addition, the
client will only need to resolve the location (or endpoint) of the service when it needs to (or
dynamically). AIM enables this loose coupling by requiring the integration APIs to be
implemented as web services and then publishes the interfaces of these web services in the
registry.

Complementing this dynamic integration capability, AIM enables application configuration by
further utilizing the web services registry. A special service, the Configuration Service, is
registered initially when the registry is installed in an operational environment. Instead of each
application having to store numerous configuration properties in a variety of configuration files
that need to be read and re-read, the configuration properties of respective applications are
provided by this configuration service. This avoids much of the administrative cost associated
with manually managing such configuration information.

Registry-based Versioning of Service Interfaces and Implementations

Web services APIs, as with most software, need to be versioned. Versioning of web services
APIs arises due to a number of requirements, including bug fixes, enhancements or other updates
to either the web services interface that defines a given API or its associated implementation.
Although this problem is generic and widespread, there is no formal standard or industry de-facto
practice that solves the problem. Many partial solutions are in existence in the industry. The
most prevalent form of versioning for web services is done by versioning the XML Schema
namespace that is related to the web service. The approach taken in AIM complements this
common practice by making use of taxonomical data structures in the registry to support web
services versioning.

By using such registry data structures, AIM solves this problem for both web services interfaces
and their associated implementations or endpoints. This is a key feature as web services
interfaces and implementations may be (and often are) independently versioned. Associated with
the storage of this information is a data model that specifies how versions are identified and
ordered. Finally, there is a set of web services operations defined that allow a client application
to create, query, and modify this version information.

©Copyright 2009 BMC Software, Inc.

5

Registry-based Disambiguation of Service Implementations

SOAP-based web services generally have their respective interfaces described in WSDL. For a
given WSDL-based interface there may be 0 to many implementations in existence that
implement that interface. In the cases of 0 or 1 implementations, client applications have a
straightforward job of determining what implementation to bind to. In cases of more than 1
implementation, clients must have some knowledge that is used to determine which endpoint is
appropriate. Often this knowledge is hard-wired or determined out-of-band.

AIM solves this service ambiguity problem by providing a data model and access method that
includes information about the service implementations that differentiates the implementations
from each other. This data model includes information about the location (geographical or
otherwise) of the service, the organization (e.g., company or department) the implementation
belongs to and so on. These disambiguation criteria are stored as name-value pairs. To enable
extensibility, there is a feature to enable user-defined disambiguation criteria to be added.

Registry-based Resource Management

Increasingly, IT resources expose a management interface that can be queried for metrics and in
some cases used to actually control such resources. Often, but not always, such interfaces are
based on the WS-MANAGEMENT standard.

One problem introduced by the use of such interfaces is how to discover where the endpoints are.
Generally this information is communicated through configuration properties or by some out-of-
band mechanism. AIM improves upon this by registering all such managed resource endpoints in
the web services registry. In addition, the other features of AIM (versioning, disambiguation,
etc.) are available to be used in conjunction with this feature.

Web Services-based Inter-Component Communication

The problem is to how to enable web components (portlets, applets, etc.) to inter-communicate in
a way that is platform independent. An example of this problem is communicating between a
Java Portlet and a SharePoint Web-Part.

AIM solves this problem by providing a simple web services API for inter-component
communication. As this is a web services API, it will work across platforms and across
implementation languages. In addition, when used with the other features of AIM, endpoints that
implement this API will have the advantage of versioning, disambiguation, and configuration
management.

	The Application Integration Manager (AIM)
	Use Case
	Features
	Registry-based Dynamic Integration and Configuration of Applications
	Registry-based Versioning of Service Interfaces and Implementations
	Registry-based Disambiguation of Service Implementations
	Registry-based Resource Management
	Web Services-based Inter-Component Communication

